Inorg. Chem. 2004, 43, 3780–3782

Ferrimagnetic Ordering Due to Fe(III) d and Donor π Spins in (Ethylenedithiotetrathiafulvalenoquinone-1,3-dithiolemethide)₂·FeBr₄

Takuya Matsumoto,[†] Toyonari Sugimoto,^{*,†,‡} Hiroko Aruga Katori,^{‡,§} Satoru Noguchi,^{*,‡,||} and Takekazu Ishida^{‡,||}

Research Institute for Advanced Science and Technology, Osaka Prefecture University, Sakai, Osaka 599-8570, Japan, RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama 351-0198, Japan, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan, and CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan

Received February 5, 2004

Magnetization and heat capacity were measured down to 0.4 K in a 2:1 charge-transfer (CT) salt of a new donor molecule, ethylenedithiotetrathiafulvalenoquinone-1,3-dithiolemethide (1) with a magnetic FeBr₄⁻ ion (1₂·FeBr₄). The Fe(III) d spins of FeBr₄⁻ ions were subject to apparently ferromagnetic interaction with each other through the interaction with the π spins developed by localization of the conducting π electrons on the donor columns, eventually giving rise to ferrimagnetic ordering (FI) near 1 K, which provides the first example in a molecular π -d system.

To date, numerous charge-transfer (CT) salts have been prepared using several organic donor molecules and magneticmetal anions, in which conducting π electrons and localized d (f) spins strongly interact and exhibit novel electrical conducting and magnetic properties.¹ Among them, FeCl₄⁻, Fe_xGa_{1-x}Br_yCl_{4-y}⁻ (0 < x < 1, 0 < y < 0.5), and Fe_xGa_{1-x}Cl₄⁻ (0.35 < x < 0.5) CT salts of bis(ethylenedithio)tetraselenafulvalene (BETS) were recognized as metalto-insulator, superconductor-to-insulator, and superconductorto-metal transitions, respectively, albeit at low temperatures as a result of the π -d interaction.²⁻⁴ A ferromagnetic metal was achieved in the Mn/Cr oxalate-bridged CT salt of bis-(ethylenedithio)tetrathiafulvalene,⁵ but the ferromagnetism

* To whom correspondence should be addressed. E-mail:toyonari@ riast.osakafu-u.ac.jp or noguchi@pe.osakafu-u.ac.jp.

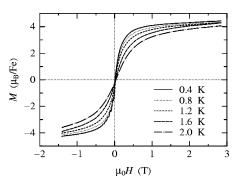
- ^{II} Graduate School of Engineering, Osaka Prefecture University.
- Kurmoo, M.; Graham, A. W.; Day, P.; Coles, S. J.; Hurshouse, M. B.; Caulfield, J. L.; Singleton, J.; Pratt, F. L.; Hayes, W.; Ducasse, L.; Guionneau, P. J. Am. Chem. Soc. 1995, 117, 12209.
- (2) Kobayashi, H.; Tomita, T.; Naito, T.; Kobayashi, A.; Sakai, F.; Watanabe, T.; Cassoux, P. J. Am. Chem. Soc. **1996**, 118, 368.
- (3) Akutsu, H.; Arai, E.; Kobayashi, H.; Tanaka, H.; Kobayashi, A.; Cassoux, P. J. Am. Chem. Soc. 1997, 119, 12681.
- (4) Kobayashi, H.; Saito, A.; Arai, E.; Akutsu, H.; Kobayashi, A.; Cassoux, P. J. Am. Chem. Soc. 1997, 119, 12392.
- (5) Coronado, E.; Galán-Mascarós, J. R.; Gómez-Garcia, C. J.; Laukhin, V. Nature 2000, 408, 447.

3780 Inorganic Chemistry, Vol. 43, No. 13, 2004

and metallic conductivity were based on each of the interactions between the conducting π electrons of donor molecules and between the localized d spins of Mn(II) and Cr(III) ions.

We recently synthesized a new CT salt, 1_2 ·FeBr₄, which has a structure alternately stacked by layers of 1 molecules and FeBr₄⁻ ions arranged in a square lattice.⁶ Above 170 K, the electrical conductivity was metallic, but below 170 K the conductivity changed to a semiconductor with very small activation energy (<10 meV). The interaction between the Fe(III) d spins of FeBr₄⁻ ions was very weak and antiferromagnetic (Weiss temperature, $\Theta = -3.9$ K) in such a higher temperature region than ca. 15 K that the conducting π electrons are supposed to survive, but the interaction apparently became ferromagnetic ($\Theta = +0.87$ K) below ca. 15 K and continued to 1.8 K, the lowest temperature used in this study. In correspondence to the change of this spin interaction, recent X-ray structure analyses of 1_2 ·FeBr₄ in the temperature range of 6.5-300 K showed a marked increase in the contacts between 1 molecules and FeBr₄ions and between the neighboring FeBr₄⁻ ions in the crystal structure near 15 K.⁷ The magnetization (M) curve approached saturation faster as the temperature decreased, but even at 1.8 K saturation was not accomplished at the magnetic field (H) of 5 T. The observed magnetization curve at 1.8 K showed a very good fit to the Brillouin function with $\Theta = +0.87$ K in the H's lower than 0.1 T, but above 0.1 T it approached saturation slower than the theoretical one as a result of the antiferromagnetic interaction of the π spins on the 1-stacked columns with the Fe(III) d spins of FeBr_4^- ions. In this communication we report that M and heat capacity (C) were measured down to 0.4 K for 1_2 ·FeBr₄

10.1021/ic0498510 CCC: \$27.50 © 2004 American Chemical Society Published on Web 05/28/2004


[†] Research Institute, Osaka Prefecture University.

[‡] CREST, Japan Science and Technology Agency.

[§] RIKEN.

⁽⁶⁾ Matsumoto, T.; Kominami, T.; Ueda, K.; Sugimoto, T.; Tada, T.; Noguchi, S.; Yoshino, H.; Murata, K.; Shiro, M.; Negishi, E.; Toyota, N.; Endo, S.; Takahashi, K. *Inorg. Chem.* **2002**, *41*, 4763.

⁽⁷⁾ Matsumoto, T.; Sugimoto, T.; Inoue, K. Unpublished results.

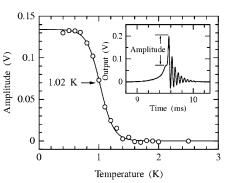
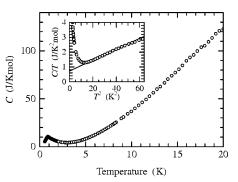


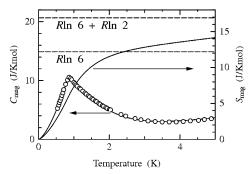
Figure 1. Magnetization (*M*) curves of 1_2 ·FeBr₄ at 0.4, 0.8, 1.2, 1.6, and 2.0 K. For clarity, the data is drawn one-way from +2.5 to -1.5 T.


and that the ferrimagnetic ordering (FI) due to Fe(III) d spins of FeBr₄⁻ ions and π spins of **1** molecules was accomplished near 1 K.

We measured the low-temperature M by an induction method down to 0.4 K using a pulse magnet system combined with a ³He refrigerator. As Figure 1 shows, the Mcurve still reached saturation faster as the temperature decreased below 2 K. However, the degree of rapidity became very small between 1.2 and 0.4 K, suggesting that the M curve is completely saturated near the temperature range. A hysteresis was not observed in the M loop. To confirm the presence of FI and to determine the transition temperature $(T_{\rm C})$, the data was analyzed using the Arrott method of M^2 vs H/M plot, which is advantageous especially for a high $T_{\rm C}$. However, for FI with a low $T_{\rm C}$ and a small hysteresis loop, it is difficult to determine the $T_{\rm C}$ with the Arrott method since the Brillouin function shows a saturation behavior even for the paramagnetic state and the expansion of a magnetic free energy on M is only effective in very low H's. Thus, we developed a novel resonant circuit method to sensitively detect the M jump in a small hysteresis loop with ferromagnetic ordering or FI.⁸ As shown in Figure 1, an oscillation initially appears below 1 K, when H changed from positive (negative) to negative (positive) and the magnitude of oscillation increased as the temperature decreased. A similar phenomenon was also observed in a sharp metamagnetic transition for (Pr/Ca)MnO_{3-δ}.⁹ The oscillating behavior is clearer for bare signals induced in the M pickup coil. The inset of Figure 2 shows an example at 0.4 K. When *H* crosses zero, a sharp *M* jump occurs in a hysteresis loop, which causes a transient oscillation in the signal, and the corresponding frequency to the *M* jump crosses the resonant frequency of the circuit. Since the initial amplitude of the oscillation is proportional to the M jump, the amplitude was plotted against temperature and a steplike change was obtained (see Figure 2). This new method is more convenient than that of that of the Arrott plot to definitively determine $T_{\rm C}$. If the $T_{\rm C}$ is defined as the midpoint of the steplike change, the value is determined to be 1.02 K.

To confirm the $T_{\rm C}$ and to identify the type of FI, we measured the *C* by a thermal relaxation method down to 0.5

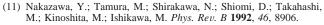
Figure 2. Temperature dependence of the oscillation amplitude. The solid curve is drawn by an empirically fitted function. Inset: Example of the signal voltage (amplitude = 0.13 V) measured at 0.4 K by the resonant circuit method.

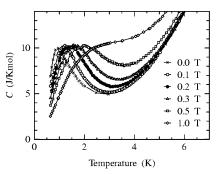

Figure 3. Temperature dependence of heat capacity (*C*) for $\mathbf{1}_2$ ·FeBr₄ under a zero magnetic field. Inset: *C*/*T* vs T^2 plot.

K using a ³He cryostat (MagLab^{HC} microcalorimeter, Oxford Instruments). A clear peak was observed at 0.9 K, which is compatible with $T_{\rm C}$ determined from the M data. The lattice contribution was estimated from a linear relation in the C/Tvs T^2 plot below 8 K, as shown in the inset of Figure 3. The parameters estimated from the slope and the intercept of the linear fitting are $\Theta_{\rm D} = 145$ K and $\gamma = 724$ mJ K⁻² mol⁻¹, respectively, where $\Theta_{\rm D}$ is an averaged Debye temperature and γ is the heat capacity coefficient of the temperaturelinear term, which gives the order of 1 mJ K^{-2} mol⁻¹ in common metals due to the electronic contribution. However, under these conditions it is difficult to eliminate the electronic contribution from the data since the π -d interaction may form the strongly correlated electron system. By subtracting the lattice contribution from the experimental data, the magnetic heat capacity (C_{mag}) is obtained, but still includes the electronic contribution. Figure 4 shows this result. The shape of C_{mag} is not a λ -type anomaly as commonly observed in a second-order transition, but the cusp with a tail that extends to a high-temperature region, which is characteristic of the short-range or low-dimensional ordering in Heisenberg spin systems arranged in a two-dimensional square lattice.¹⁰ Accordingly, the Fe(III) d spins of FeBr₄⁻ ions and the π spins of 1 molecules are in the two-dimensional FI state above $T_{\rm C}$, but are converted to the three-dimensional FI below $T_{\rm C}$. The magnetic entropy $(S_{\rm mag})$ is calculated by integrating C_{mag}/T with respect to temperature (see also Figure 4). Compared to $R \ln 6$ and $(R \ln 6 + R \ln 2) (R)$: gas constant), which correspond to the S_{mag} 's with $S = \frac{5}{2}$ of

⁽⁸⁾ Noguchi, S.; Matsumoto, A.; Matsumoto, T.; Sugimoto, T.; Ishida, T. Physica B 2004, 346–347, 397.

⁽⁹⁾ Noguchi, S.; Kawamata, S.; Ogomi, T.; Yamamoto, M.; Ishida, T. J. Phys. Chem. Solids 2003, 64, 2059.


⁽¹⁰⁾ Bloembergen, P. Physica B 1977, 85, 51.


Figure 4. Magnetic heat capacity (C_{mag}) and magnetic entropy (S_{mag}) for 1₂·FeBr₄ as a function of temperature. A clear peak appears at 0.9 K. *R* ln 6 and ($R \ln 6 + R \ln 2$) correspond to S_{mag} 's with $S = \frac{5}{2}$ of Fe(III) d spins and with a total of $S = \frac{5}{2}$ and $S = \frac{1}{2}$ of donor π spins, respectively.

Fe(III) d spins and with a total of $S = \frac{5}{2}$ and $S = \frac{1}{2}$ of donor π spins, respectively, the observed S_{mag} value is larger than *R* ln 6 but smaller than (*R* ln 6 + *R* ln 2) above 2.5 K, suggesting that the d spins coexist with the π spins of the donor columns, which provide an additional contribution to S_{mag} .

The temperature dependence of *C* under several *H*'s of 0-1 T was also investigated (see Figure 5). *H* was perpendicularly applied to the plane of the FeBr₄⁻ square lattice. The *C* showed strong *H* dependence, i.e., a round peak that gradually shifted to the higher temperature side as *H* increased. This round peak is due to the magnetic Schottky anomaly caused by the Zeeman splitting of the degenerated ground state under the *H*'s. This *H* dependence is very similar to that in other ferro- and ferrimagnetic materials such as *p*-nitrophenyl nitronyl nitroxide¹¹ and Cu(3-chloropyridine)₂-(N₃)₂,¹² but is in marked contrast to antiferromagnets such

(12) Hagiwara, M.; Minami, K.; Katori, H. A. Prog. Theor. Phys. Suppl. 2002, No. 145, 150.

Figure 5. Temperature dependence of *C* for 1_2 ·FeBr₄ under several *H*'s of 0.0, 0.1, 0.2, 0.3, 0.5, and 1.0 T.

as a κ -type of CT salt of BETS with FeBr₄⁻ ion, which displays less *H* dependence.¹³

In conclusion, this new CT salt of 1_2 ·FeBr₄ provides the first example of FI for the Fe(III) d spins of FeBr₄⁻ ions and the π spins of 1 molecules by virtue of π -d interactions, which typically prefer antiferromagnetic interactions or ordering. However, the mechanism of this FI still remains unclear, since there are open questions of (1) degree of localization of the conducting π electrons on the 1-stacked column near 1 K, (2) distribution of localized charges and spins on the 1 molecules within each column and on each 1 molecule, and (3) parallel alignment of the Fe(III) d spins of FeBr₄⁻ ions through the interaction with the π spins of **1** molecules within each layer and between the layers. We are currently investigating the π -d interaction in this CT salt under high pressures, where the metallic conductivity might be maintained, and also in the CT salts of new donor molecules, which have magnetic-metal properties similar to 1.

IC049851O

⁽¹³⁾ Fujiwara, H.; Fujiwara, E.; Nakazawa, Y.; Narymbetov, B. Zh.; Kato, K.; Kobayashi, H.; Kobayashi, A.; Tokumoto, M.; Cassoux, P. J. Am. Chem. Soc. 2001, 123, 306.